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Abstract

The parallel construction of mazimal independent setsis a useful building block for many algorithms in
the computational sciences, including graph coloring and multigrid coarse grid creation on unstructured
meshes. We present an efficient asynchronous maximal independent set algorithm for use on parallel
computers, for “well partitioned” graphs, that arise from finite element models. For appropriately par-
titioned bounded degree graphs, it is shown that the running time of our algorithm under the PRAM
computational model is O(1), which is an improvement over the previous best PRAM complexity for this
class of graphs. We present numerical experiments on an IBM SP, that confirm our PRAM complexity
model is indicative of the performance one can expect with practical partitions on graphs from finite
element problems.
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1 Introduction

An independent set is a set of vertices I C V in a graph G = (V, E), in which no two members of I are
adjacent (i.e. Yo,w € I, (v,w) ¢ E); a mazrimal independent set (MIS) is an independent set for which no
proper superset is also an independent set. The parallel construction of an MIS is useful in many computing
applications, such as graph coloring and coarse grid creation for multigrid algorithms on unstructured finite
element meshes. In addition to requiring an MIS (which is not unique), many of these applications want
an MIS that maximizes a particular application dependent quality metric. Finding the optimal solution in
many of these applications is an NP-complete problem i.e., they can not be solved in polynomial time or
can be solved by a nondeterministic(N) machine in polynomial(P) time [7]; for this reason greedy algorithms
in combination with heuristics are commonly used for both the serial and parallel construction of MISs.
Many of the graphs of interest arise from physical models, such as finite element simulations. These graphs
are sparse and their vertices are connected to only their nearest physical neighbors. The vertices of such
graphs have a bound A on their maximum degree. We will discuss our method of attaining O(1) PRAM
complexity bounds for computing an MIS on such graphs, namely finite element models in three dimensional
solid mechanics.

Our algorithm is notable in that it does not rely on global random vertex ordering [8, 10], although
it 1s closely related to these algorithms, and can be viewed as a “two level” random algorithm as we use
random (actually just distinct) processor identifiers. Our O(1) complexity (on finite element graphs) is an
improvement of the O(log(n)/loglog(n)) complexity of the random algorithms [8]. Nor does our algorithm
rely on deterministic coin tossing [6, 4] to achieve correctness in a distributed memory computing environment
- but explicitly uses knowledge of the graph partitioning to provide for the correct construction of an MIS in
an efficient manner. Deterministic coin tossing algorithms [6] have O(log™ n) complexity on bounded degree
graphs (a more general class of graphs than finite element graphs), although their constant A?log A is
somewhat higher than ours A, and the ability of these methods to incorporate heuristics is also not evident.

We will not include the complexity of the graph partitionings in our complexity model, though our
method explicitly depends on these partitions. We feel justified in this as it is reasonable to assume that
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the MIS program is embedded in a larger application that requires partitions that are usually much better
than the partitions that we require. The design of an O(1) partitioning algorithm, for finite element graphs,
whose partitionings can be proven to satisfy our requirements, described in §3, is an open problem discussed
in §5. Our numerical experiments confirm our O(1) complexity claim.

Additionally, the complexity model of our algorithm has the attractive attribute that it requires far fewer
processors than vertices, in fact we need to restrict the number of processors used in order to attain optimal
complexity. Our PRAM model uses P = O(n) processors (n = |V]) to compute an MIS, but we restrict P
to be at most a fixed fraction of n to attain the optimal theoretical complexity. The upper bound on the
number of processors is however far more than the number of processors that are generally used in practice
on common distributed memory computers of today; so given the common use of relatively fat processor
nodes in contemporary computers, our theoretical model allows for the use of many more processors than
one would typically use in practice. Thus, in addition to obtaining optimal PRAM complexity bounds, our
complexity model reflects the way that modern machines are actually used.

This paper is organized as follows. In §2 we describe a new asynchronous distributed maximal independent
set algorithm, in §3 we show that our algorithm has optimal performance characteristics under the PRAM
communication model for the class of graphs from discretized PDEs. Numerical results of the method are
presented in section §4, and we conclude in §5 with possible directions for future work.

2 An asynchronous distributed memory maximal independent set
algorithm.

Consider a graph G = (V, E) with vertex set V, and edge set F, an edge being an unordered pair of distinct
vertices. Our application of interest is a graph which arises from a finite element analysis, where elements
can be replaced by the edges required to make a clique of all vertices in each element, see Figure 1. Finite
element methods, and indeed most discretization methods for PDEs, produce graphs in which vertices only
share an edge with their physically nearest neighbors, thus the degree of each vertex v € V' can be bounded by
some modest constant A. We will restrict ourselves to such graphs in our complexity analysis. Furthermore
to attain our complexity bounds we must also assume that vertices are “partitioned well” (which will be
defined later) across the machine.

FE mesh Graph

Figure 1: Finite element quadrilateral mesh and its corresponding graph

We will introduce our algorithm by first describing the basic random greedy MIS algorithms described in
[10]. We will utilize an object oriented notation from common programming languages, as well as set notation,
in describing our algorithms; this is done to simplify the notation and we hope it does not distract the unini-
tiated reader. We endow vertices v with a mutable data member state, state € {selected, deleted, undone}.
All vertices begin in the undone state, and end in either the selected or deleted state; the MIS is defined as
the set of selected vertices. Fach vertex v will also be given a list of adjacencies adjac.

De finition 1: The adjacency list for vertex v is defined by v.adjac = {vl | (v,v1) € E'}

We will also assume that v.state has been initialized to the undone state for all v and v.adjac is as defined
in Definition 1 in all of our algorithm descriptions. With this notation in place we show the basic MIS



algorithm (BMA) in Fgure 2.

forallv e V
if v.state = undone then
v.state < selected
forall v1 € v.adjac
vl.state + deleted
I« {v eV |uvstate = selected}

Figure 2: Basic MIS Algorithm (BMA) for the serial construction of an MIS

For parallel processing we partition the vertices onto processors and define the vertex set V, owned by
processor p of P processors. Thus V =V, UV, U...U Vp is a disjoint union, and for notational convenience
we give each vertex an immutable data member proc after the partitioning is calculated to indicate which
processor is responsible for it. Define the edge separator set E° to be the set of edges (v,w) such that
v.proc # w.proc. Define the verter separator set V° = {v | (v,w) € B} (G is undirected, thus (v, w) and
(w,v) are equivalent). Define the processor vertex separator set, for processor p, by VpS ={v|(v,w) € B
and (v.proc = p or w.proc = p)}. Further define a processors boundary vertex set by VpB =V, N V9, and
a processors local vertex set by VpL =V, - VpB. Our algorithm provides for correctness and efficiency in a
distributed memory computing environment by first assuming a given ordering or numbering of processors
so that we can use inequality operators with these processor numbers. As will be evident later, if one vertex
is placed on each processor (an activity of theoretical interest only), then our method will degenerate to one
of the well known random types of algorithms [10].

We define a function mpivs(vertex_set) (an acronym for “maximum processor in vertex set”), which
operates on a list of vertices:

De finition 2: mpivs(vertex_set) = {

mazx{v.proc | v € vertex_set, v.state # deleted} if vertex_set #
—00 if wvertex_set =

Given these definitions and operators, our algorithm works by implementing two rules within the BMA
running on processor p, as shown below.

e Rule 1: Processor p can select a vertex v only if v.proc = p.
e Rule 2: Processor p can select a vertex v only if p > mpivs(v.adjac).

Note that Rule 1 is a static rule, because v.proc is immutable, and can be enforced simply by iterating
over V), on each processor p when looking for vertices to select. In contrast, Rule 2 is dynamic because the
result of mpivs(v.adjac) will in general change (actually monotonically decrease) as the algorithm progresses
and vertices in v.adjac are deleted.

2.1 Shared Memory Algorithm

Our Shared Memory MIS Algorithm (SMMA) in Figure 3, can be written as a simple modification to BMA.

We have modified the vertex set that the algorithm running on processor p uses (to look for vertices to
select), so as to implement Rule 1. We have embedded the basic algorithm in an iterative loop and added
a test to decide if processor p can select a vertex, for the implementation of Rule 2. Note, the last line of
Figure 3 may delete vertices that have already been deleted, but this is inconsequential.

There is a great deal of flexibility in the order which vertices are chosen in each iteration of the algorithm.
Herein lies a simple opportunity to apply a heuristic, as the first vertex chosen will always be selectable and
the probability is high that vertices which are chosen early will also be selectable. Thus if an application can
identify vertices that are “important” then those vertices can be ordered first and so that a less important
vertex can not delete a more important vertex. For example, in the automatic construction of coarse grids for
multigrid equation solvers on unstructured meshes one would like to give priority to the boundary vertices



while {v € V,, | v.state = undone} # )

forall v € V,, - - implementation of Rule 1
5: if v.state = undone then
6: if p > mpivs(v.adjac) then - - implementation of Rule 2
7 v.state + selected

forall vl € v.adjac
vl.state + deleted
I« {veV|uvstate = selected}

Figure 3: Shared Memory MIS Algorithm (SMMA) for MIS, running on processor p

[1]. This is an example of a static heuristic, that is a ranking which can be calculated initially and does
not change as the algorithm progresses. Dynamic heuristics are more difficult to implement efficiently in
parallel. An example is the saturation degree ordering (SDO) used in graph coloring algorithms [3]: SDO
colors the vertex with a maximum number of different colored adjacencies; the degree of an uncolored vertex
will increase as the algorithm progresses and its neighbors are colored. We know of no MIS application, that
does not have a quality metric to maximize - thus it is of practical importance that an MIS algorithm can
accommodate the use of heuristics effectively. Our method can still implement the “forall” loops, with a
serial heuristic, i.e. we can iterate over the vertices in V), in any order that we like. To incorporate static
heuristics globally (i.e. a ranking of vertices), one needs to augment our rules and modify SMMA | see [1] for
details, but in doing so we lose our complexity bounds, in fact if one assigns a random rank to all vertices
this algorithm would degenerate to the random algorithms described in [10, 8].

To demonstrate correctness of SMMA we will proceed as follows: show termination; show that the
computed set I is maximal; and show that independence of I = {v € V | v.state = selected} is an invariant
of the algorithm.

e Termination is simple to prove and we will do so in §3.

e To show that I will be maximal we can simply note that if v.state = deleted for v € V', v must have
a selected vertex vl € v.adjac as the only mechanism to delete a vertex is to have a selected neighbor
do so. All deleted vertices thus have a selected neighbor and they can not be added to I and maintain
independence, hence I i1s maximal.

e To show that 7 is always independent first note that [ is initially independent - as I is initially the
empty set. Thus it suffices to show that when v is added to 7, in line 7 of Figure 3, no vl € v.adjac is
selected. Alternatively we can show that v.state # deleted in line 7, since if v can not be deleted then
no vl € v.adjac can be selected. To show that v.state # deleted in line 7 we need to test three cases
for the processor of a vertex vl that could delete v:

— Case 1) vl.proc < p: v would have blocked v1.proc from selecting v1, because mpivs(vl.adjac) >
v.proc = p > vl.proc, so the test on line 6 would not have been satisfied for v1 on processor
vl.proc.

— Case 2) vl.proc = p: v would have been deleted, and not passed the test on line 5, as this processor
selected v1 and by definition there is only one thread of control on each processor.

— Case 3) vl.proc > p: as mpivs(v.adjac) > vl.proc > p thus p ? mpivs(v.adjac) the test on line 6
would not have succeeded, line 7 would not be executed on processor p.

Further we should show that a vertex v with v.state = selected can not be deleted, and v.state = deleted
can not be selected. For a v to have been selected by p it must have been selectable by p (i.e. {v1 € v.adjac |
vl.proc > p, vl.state # deleted} = (). However for another processor pl to delete v, pl must select vl
(pl = vl.proc), this is not possible since if neither v nor vl are deleted then only one processor can satisfy
line 6 in Figure 3. This consistency argument will be developed further in §3. Thus, we have shown that
I ={v €V |v.state = selected} is an independent set and, if SMMA terminates, I will be maximal as well.



2.2 Distributed Memory Algorithm

For a distributed memory version of this algorithm we will use a message passing paradigm and de-
fine some high level message passing operators. Define send(proc, X, Action) and receive(X, Action) -
send(proc, X, Action) sends the object X and procedure Action to processor proc, receive(X, Action) will
receive this message on processor proc. Figure 4 shows a distributed memory implementation of our MIS
algorithm running on processor p. We have assumed that the graph has been partitioned to processors 1 to
P, thus defining V), VpS, VpL, VpB, and v.proc for all v € V.

A subtle distinction must now be made in our description of the distributed memory version of the
algorithm in Figure 4 and 5: vertices (e.g. v and vl) operate on local copies of the objects and not to a
single shared object. So, for example, an assignment to v.state refers to assignment to the local copy v on
processor p. Each processor will have a copy of the set of vertices VpE =VUu VpS, i.e. the local vertices V,
and one layer of “ghost” vertices. Thus all expressions will refer to the objects (vertices) in processor p’s
local memory.

while {v € V,, | v.state = undone} # )
forall v € VpB - - implementation of Rule 1
if v.state = undone then
if p > mpivs(v.adjac) then - - implementation of Rule 2
Select(v)
proc_set « {proc | v € ‘/15‘06} —-p
forall proc € proc_set
send(proc, v, Select)
while receive(v, Action)
if v.state = undone then

Action(v)
forall v € VpL - - implementation of Rule 1
if v.state = undone then
if p > mpivs(v.adjac) then - - implementation of Rule 2
Select(v)

forall v1 € V? Nv.adjac then
proc_set « {proc | vl € ‘/15‘06} —-p
forall proc € proc_set
send(proc,vl, Delete)
I« {v eV |uvstate = selected}

Figure 4: Asynchronous Distributed Memory MIS Algorithm (ADMMA) running on processor p

procedure Select(v)
v.state + selected
forall vl € v.adjac
Delete(v1)
procedure Delete(v])
vl.state + deleted

Figure 5: ADMMA “Action” procedures running on processor p

Note that the value of mpivs(v.adjac) will monotonically decrease as vl.state (vl € v.adjac) are deleted,
thus as all tests to select a vertex, are of the form p > mpivs(v.adjac) some processors will have to wait for
other processors to do their work (i.e. select and delete vertices). In our distributed memory algorithm in
Figure 4 the communication time is added to the time that a processor may have to wait for work to be done
by another processor; this does not effect the correctness of the algorithm but it may effect the resulting



MIS. Thus ADMMA is not a deterministic MIS algorithm; although the synchronous version - that we use
for our numerical results - 1s deterministic for any given partitioning.

The correctness for ADMMA can be shown in a number of ways, but first we need to define a weaving
monotonic path (WMP) as a path of length ¢ in which each consecutive pair of vertices ((v;,v;) € E) satisfies
v;.proc < vj.proc, see Figure 6.

Processor rank

Figure 6: Weaving monotonic path (WMP) in a 2D finite element mesh

One can show that the semantics of ADMMA run on a partitioning of a graph is equivalent to a random
algorithm with a particular set of “random” numbers. Alternatively, we can use the correctness argument
from the shared memory algorithm and show consistency in a distributed memory environment. To do this
first make a small isomorphic transformation to ADMMA in Figure 4:

o Remove v.state < selected in Figure 5, and replace it with a memoization of v so as to avoid “selecting”
v again.

e Remove the “Select” message from Figure 4 and modify the Select procedure in Figure 5 to send the
appropriate “Delete” messages to processors that “touch” vl € v.adjac.

e Redefine I to be I = {v € V | v.state # deleted} at the end of the algorithm.

e Change the termination test to: while (Jvl € v.adjac | v € V,,, v.state # deleted, vl.state # deleted),
or simply while (7 is not independent).

This does not change the semantics of the algorithm but removes the selected state from the algorithm
and makes it mathematically simpler (although less concrete of a description). Now only Delete messages
need to be communicated and v.state < deleted is the only change of state in the algorithm. Define the
directed graph GWMFE — (5 pWMEP) pWMP — 1(y w) € E | v.proc < w.proc}; in general GWME will
be a forest of acyclic graphs. Further define G;VMP = (VPS,EZI,/VMP), EZI,/VMP ={(v,w) € E | w.state #

deleted, v.proc = p}. G;VMP is the current local view of G"MF with the edges removed for which the

“source” vertices have been deleted. Rule 2 can now be restated: processor p can only select a vertex that is
not the end of an edge in EZI,/VMP. Processors will delete “down stream” edges in £ M and send messages
so as other processors can delete their “up stream” copies of these edges, thus GZI,/VMP will be pruned as p
deletes vertices and receives delete messages. Informally, consistency for ADMMA can be inferred as the
only information flow (explicit delete messages between processors) moves down acyclic graphs in GWMF;
as the test, (Vvl € v.adjac | vl.proc < p or vl.state = deleted) for processor p to select a vertex v, requires
that all edges (in EWMP) to v are “deleted”. Thus the order of the reception of these delete messages is
inconsequential and there is no opportunity for race conditions or ambiguity in the results of the MIS. More
formally we can show that these semantics insure that I = {v € V | v.state # deleted} is maximal and

independent:

e [ is independent as no two vertices (in 7) can remain dependent forever. To show this we note that
the only way for a processor p to not be able to select a vertex v is for v to have a neighbor v; on a



higher processor. If vy is deleted then p is free to “select” v. Vertex vy on processor p; can in tern
be selected unless it has a neighbor v2 on a higher processor. Eventually the end of this WMP will
be reached and processor p; will process v; and thus release p;_1 to select v;_; and on down the line.
Therefore no pair of undone vertices will remain, and 7 will eventually be independent.

e [ 1s maximal as the only way for a vertex to be deleted is to have a selected neighbor. To show that no
vertex v that is “selected” can ever be deleted, as in our shared memory algorithm, we need to show
that three types of processors p; with vertex vy can not delete v.

— For p = p1: we have the correctness of the serial semantics of BMA to ensure correctness, i.e. v
would be deleted and p would not attempt to select it.

— For p > p1: p1 will not pass the mpivs(vy.adjac) test as in the shared memory case.

— For p < p1: p does not pass the mpivs(vy.adjac) and will not “select” v in the first place.

Thus I 1s maximal and independent.

3 Complexity of the asynchronous maximal independent set algo-
rithm

In this section we derive the complexity bound of our algorithm under the PRAM computational model.
To understand the costs of our algorithm we need to bound the cost of each outer iteration, as well as,
bound the total number of outer iterations. To do this we will first need to make some restrictions on the
graphs that we work with and the partitions that we use. We assume that our graphs come from physical
models, that is vertices are only connected by an edge to its nearest neighbors so the maximum degree A
of any vertex is bounded. We will also assume that our partitions satisfy a certain criterion (for regular
meshes we can illustrate this criterion with regular rectangular partitions and a minimum logical dimension
that depends only on the mesh type). We can bound the cost of each outer iteration by requiring that the
sizes of the partitions are independent of the total number of vertices n. Further we will assume that the
asynchronous version of the algorithm is made synchronous by including a barrier at the end of the “receive”
while loop, in Figure 4, at which point all messages are received and then processed in the next forall loop.
This synchronization is required to avoid more than one leg of a WMP from being processed in each outer
iteration. We need to show that the work done in each iteration on processor p is of order N, (N, = |V} ]).
This is achieved if we use O(n) processors and can bound the load imbalance (i.e. maz{N,}/min{N,}) of
the partitioning.

LEMMA 3.1. With the synchronous version of ADMMA, the running time of the CREW PRAM version of
one outer iteration in Figure 4 is O(1) = O(n/P), if max{N,}/min{N,} = O(1)

Proof. We need to bound the number of processors that touch a vertex v i.e. |v|pmc = |proc |ve Vp€06|
In all cases |v|pmc is clearly bounded by A. Thus, maz |v|pmc * N, is O(1) and is an upper bound (and
a very pessimistic bound) on the number of messages sent in one iteration of our algorithm. Under the
PRAM computational model we can assume that messages are sent between processors in constant time and
thus our communication costs in each iteration is O(1). The computation done in each iteration is again
proportional to N, and bounded by A N,, the number of vertices times the maximum degree. This is also
a very pessimistic bound that can be gleaned by simply following all the execution paths in the algorithm
and successively multiplying by the bounds on all of the loops (A and N,). The running time for each outer
iteration is therefore O(1) = O(n+ A/P). O

Notice for regular partitions |v|pmc is bounded by 4 in 2D, and 8 in 3D, and that for optimal partitions of
large meshes |v|pmc is about 3 and 4 for 2D and 3D respectively. The number of outer iterations, in Figure
4, 18 a bit trickier to bound. To do this we will need to look at the mechanism by which a vertex fails to be
selected.

THEOREM 3.1. The running time in the CREW PRAM computational model, of ADMMA, is bounded by
the mazimum length weaving monotonic path in G.



Proof. To show that the number of outer iterations is bounded to the maximum length WMP in G, we
need to look at the mechanism by which a vertex can fail to be selected in an iteration of our algorithm
and thus potentially require an additional iteration. For a processor p; to fail to select a vertex vy, v; must
have an undone neighbor vs on a higher processor p,. For vertex vs to not be selectable, vy in turn must
have an undone neighbor vs on a higher processor ps and so on until v; is the top vertex in the WMP. The
vertex v; at the end of a WMP will be processed in the first iteration as there i1s nothing to stop v;.proc from
selecting or deleting v;. Thus, in the next iteration, the top vertex v; of the WMP will have been either
selected or deleted; if v; was selected then v;_; will have been deleted and the Undone WMP (UWMP), a
path in GWMP  will be at most of length ¢ — 2 after one iteration; and if v; was deleted (the worst case)
then the UWMP could be of at most length ¢ — 1. After ¢ outer iterations the maximum length UWMP will
be of length zero, thus all vertices will be selected or deleted. Therefore, the number of outer iterations is
bounded by the longest WMP in the graph. O

COROLLARY 3.1. ADMMA will termanate.

Proof. Clearly the maximum length of a WMP is bounded by the number of processors P. By THEOREM
3.1 ADMMA will terminate in a maximum of P outer iterations. O

To attain our desired complexity bounds, we want to show that a WMP can not grow longer than a
constant. To understand the behavior of this algorithm we begin with a few observation about regular
meshes. Begin by looking at a regular partitioning of a 2D finite element quadrilateral mesh. Figure 6 shows
a 2D mesh and a partitioning with regular blocks of four (2 * 2) and a particular processor order. This is
just small enough to allow for a WMP to traverse the mesh indefinitely, but clearly a nine (3 % 3) vertex
partitions would break this WMP and only allow it walk around partition intersections. Note that the (2 % 2)
case would require just the right sequence of events to happen on all processors for this WMP to actually
govern the run time of the algorithm. On a regular 3D finite element mesh of hexahedra the WMP can coil
around a line between four processors and the required partition size, using the same arguments as in the 2D
case, would be five vertices on each side (or one more than the number of processors that share a processor
interface line).

For irregular meshes one has to look at the mesh partitioning mechanism employed. Partitions on
irregular meshes in scientific and engineering applications will generally attempt to reduce the number of
edges cut (i.e. |ES|) and balance the number of vertices on each partition (i.e. |V,| *p/n ~ 1). We will
assume that such a partitioner is in use and make a few general observations. First the partitions of such a
mesh will tend to produce partitions in the shape of a hexagon in 2D for a large mesh with relatively large
partitions. This is because the partitioner is trying to reduce the surface to volume ratio of each partition.
These partitions are not likely to have skinny regions where a WMP could jump through the partition, and
thus the WMP is relegated to following the lines of partition intersections. We do not present statistical
or theoretical arguments as to the minimum partition size N that must be employed to bound the growth
of a WMP for a given partitioning method; though clearly some constant N exists that, for a give finite
element mesh type and a given reasonable partitioning method, will bound the maximum WMP length by
a constant. This constant is roughly the number of partitions that come close to each other at some point,
an optimal partitioning of a large D dimensional mesh will produce partitioning in which D + 1 partitions
meet at any given pownt. Thus, when a high quality mesh partitioner 1s in use, we would expect to see the
algorithm terminate in at most four iterations on adequately well partitioned and sized three dimensional
finite element meshes.

4 Numerical results

We present numerical experiments on an IBM SP with 80, 120 Mhz, Power2 processors at Argonne National
Laboratory. An extended version of the Finite Element Analysis Program (FEAP)[11], is used to generate
out test problems and produce our graphics. We use ParMetis [9] to calculate our partitions, and PETSC
[2] for our parallel programming and development environment. Our code is implemented in C++, FEAP
is implemented in FORTRAN, PETSc and ParMetis are implemented in C. We want to show that our com-
plexity analysis is indicative of the actual behavior of the algorithm with real (imperfect) mesh partitioners.



Our experiments confirm our PRAM complexity model is indicative of the performance one can expect with
practical partitions on graphs of finite element problems. Due to a lack of processors we are not able to
investigate the asymptotics of our algorithm throughly.

Our experiments will be used to demonstrate that we do indeed see the behavior that our theory predicts.
Additionally we will use numerical experiments to quantify lower bound on the number of vertices per
processor that our algorithm requires before growth in the number of outer iterations is observed. We will
use a parameterized mesh from solid mechanics for our test problem. This mesh is made of eight vertex
hexahedral trilinear “brick” elements and is almost regular; the maximum degree A of any vertex is 26 in
the associated graph. Figure 7 shows one mesh (13882 vertices). The other meshes that we test are of the
same physical model but with different scales of discretization.

Figure 7: 5296 Vertex 3D finite element mesh

We add synchronization to ADMMA on each processor by receiving all messages from neighboring pro-
cessors in each iteration, to more conveniently measure the maximum length WMP that actually governs the
number of outer iterations. Table 8 shows the results of the number of iterations required to calculate the
MIS. Each case was run 10 times, as we do not believe that ParMetis is deterministic, but all 10 iteration
counts were identical, thus 1t seems that this did not effect any of our results. A perfect partitioning of
a large D-dimensional mesh with a large number of vertices per processor will result in D + 1 processors
intersecting at a “point” and D partitions sharing a “line”. If these meshes are optimal we can expect that
the length of these lines (of partition boundaries) will be of approximately uniform length. The length of
these lines required to halt the growth of WMPs is D + 1 vertices on an edge, as discussed in §3. If the
approximate average size of each partition is that of a cube with this required edge length, then we would
need about 64 vertices per partition to keep the length of a WMP from growing past 4. This assumes that
we have a perfect mesh, which we do not, but nonetheless this analysis gives an approximate lower bound
on the number of vertices that we need per processor to maintain our constant maximum WMP length.

Processors
Vertices 8|16|24|32|40|48|56|64|72|80
427 31 3 3 3 4 4 4 4 6 6
1270 21 4 3 3 4 4 4 3 4 3
2821 31 3 4 3 3 3 4 3 4 4
5296 2| 2 3 3 3 3 4 3 3 3
8911 31 3 4 3 4 3 4 3 3 3
13882 31 3 3 3 3 3 3 3 3 3

Figure 8: Average number of iterations

Figure 9 shows a graphic representation of this data for all partitions. The growth in iteration count
for constant graph size is reminiscent of the polylogarithmic complexity of flat or vertex based random MIS
algorithms [8]. Although ParMetis does not specify the ordering of processors, it is not likely to be very



random. These results show that the largest number of vertices per processor that “broke” the estimate of
our algorithms complexity bound is about 7 (6.5 average) and the smallest number of vertices per processor
that stayed at our bound of 4 iterations was also about 7 (7.3 average). To demonstrate our claim of O(1)
PRAM complexity we only require that there exists a bound N on the number of vertices per processor that
is required to keep a WMP form growing beyond the region around a point where processors intersect. These
experiments do not show any indication that that such an N does not exist. Additionally these experiments
show that our bounds are quite pessimistic for the number of processors that we were able to use. This data
suggests that we are far away from the asymptotics of this algorithm, that is, we need many more processors
to have enough of the longest WMPs so that one consistently governs the number of outer iterations.

Average Number of Iterations

10 Processors

Vertices

Figure 9: Average Iterations vs. number of processors and number of vertices

5 Conclusion

We have presented a new maximal independent set algorithm that, for graphs arising from finite element
analysis, possesses optimal (i.e. O(1) PRAM complexity), if an adequate mesh partitioner is employed. The
particular mesh partitions that we require for our complexity analysis have been shown to be attainable
(based on numerical experiments using a publicly available mesh partitioner). That is with ParMetis and
about a hundred vertices per processor, our algorithm terminates in a small (< 4) number of iterations. Our
algorithm is novel in that it explicitly utilizes the partitionings that are freely available to stop the growth of
monotonic paths which are responsible for the polylogarithmic complexity of flat or vertex based algorithms.

We have concentrated on the practical issues of our algorithm but have not fully explored the theoretical
issues. Some areas of future work could be:

e Can this method provide for an improvement in the complexity bounds of more general graphs?

e Can the graph partitioning be incorporated into a complexity model of this method and maintain a
theoretically optimal complexity bound? Some potential directions for such partitioners are

— Geometric partitioners [5].

— A level set partitioning algorithm.
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